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1 Ancient Cryptography

1.1 General Introduction

• Cryptography is the study of encoding and decoding messages.

• The Caesar cipher shifts each letter by a certain number.

– E.g. A shifts to C, B shifts to D, etc.

∗Thanks to Khan Academy for providing their cryptography course. All of the notes come
from their videos and articles.
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– Every letter has a certain frequency, so we examine the frequency of
letters to determine the shift (frequency analysis).

• The polyalphabetic cipher shifts each letter by a given word.

– Assume the cipher word is ‘SNAKE.’ In numerical terms, where A is
1, B is 2, etc., SNAKE ≡ 19 13 1 11 5.

– If we want to send the message, ”Meet me at elephant lake,” then
we shift M by 19, the first e by 13, the second e by 1, etc., where we
repeat the pattern given by SNAKE.

– We can analyze the message in intervals of 5 to decrypt it.1

• The one-time pad uses probability to generate a uniform distribution of
letters used in the message.

– Generate a sequence with as many integers as words. Shift each letter
by its corresponding number in the sequence.

• The frequency stability property says that a truly random sequence will
be equally likely to contain every sequence of any length.

• Perfect secrecy is where, regardless of computational power, a machine
only serves as best as a guess.

– On 9/12/1945, Claude Shannon proved, for the first time, that the
one-time pad is perfectly secret.

– The size of the message space is the same as the size of the key space
and ciphertext space.

• We can generate a truly random sequence by sampling random fluctuations
(noise) in nature. We visualize it by creating a random walk, or a path
that changes according to each number.

– John von Neumann generated a truly random sequence by themiddle-
squares method:

1. Select a truly random number, or the seed.

∗ E.g. measuring noise or the current time in milliseconds.

2. Square the seed and output the middle of the resulting number.

3. Use that number as the next seed and repeat the process.

– The pseudorandom sequence repeats over time, unlike a random se-
quence. The period is the length before a pseudorandom sequence
repeats.

∗ The period is limited by the length of the seed2.

– We shrink the key space by using pseudorandom sequences.

– As computers get faster, the practical safeness of the keys must in-
crease.

1They’re functionally a bunch of Caesar ciphers now.
2A n-digit seed can’t have a greater period than 10n.
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1.2 The Enigma Encryption Machine

• A rotor encryption machine sums up three3 numbers that are each
a part of their own random sequence of integers 1 through 26. The sum
serves as the shift.

– The initial state of each device is called the key setting. All possible
key settings are the key space.4

– The daily key setting was distributed to each operator beforehand.

– Operators were told to set their machine to a random position for
each rotor before communication started. We, as humans, tend to
not create random initial positions, however. It allowed the Allies to
reverse engineer the rotor wirings.

– The Enigma was also designed so that an input letter would never
encrypt to itself, but that led to the Bombe.

∗ It had multiple Enigma rotors chained together and took advan-
tage of common words (cribs).

∗ The cribs allowed the Allies to read the messages within hours
of the Germans issuing them.

2 Ciphers

2.1 Code vs. Cipher

• A code is a mapping from a word/phrase into something else like symbols.

– E.g. accountant could be equivalent to “Come at once. Do not
delay.”

– A codebook lists codes.

• Ciphers do not involve meaning. They are algorithms performed on letters.

– E.g. the Caesar Cipher is a shift cipher because each letter shifts
to another: A → D,B → E,C → F.

2.2 Shift Ciphers

• We can encrypt messages by doing the following to every letter in the
message M :

1. Convert the letter into a number where A = 0, B = 1, C = 2, etc.

2. Calculate Y ≡ X+K (mod 26), where Y is the encrypted letter and
K is the key.

3Not necessarily three–it’s just used to illustrate the process.
4Think of column space in linear algebra.
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3. Convert Y into its corresponding letter.

• We can decrypt messages by doing the following to every letter in the
ciper text C:

1. Convert the letter into a number Y .

2. Calculate X ≡ Y −K (mod 26).

3. Convert X into its corresponding letter.

• Shift ciphers are insecure via a brute force attack, or trying all 26 keys.

2.3 XOR Bitwise Operation

• Bitwise means we’re dealing with individual bits, or binary numbers.

• The XOR bitwise operation outputs a 1 whenever the inputs do not match.
It’s functionally the same as addition modulo 2.

– E.g. 100111001011010100111010XOR 010110100001101111011000 =
110001101010111011100010.

• XOR has a 50% chance of producing a 0 or a 1 while the AND and OR
commands don’t.

3 Modern Cryptography

3.1 Public Key Cryptography

• The Fundamental Theorem of Arithmetic says that every integer
has a unique prime factorization.

• Internet grew, requiring cryptography.

• A one-way function is easy in one direction but hard in the other.

• Agree on a publicly on a starting color, then mix a private color into the
starting color. Exchange the resulting mixtures. Mix your private color
into the exchange mixture, resulting in the same mixture.

• The Discrete Logarithm Problem

1. Find a prime modulus n, e.g. 17.

2. Find a primitive root modulo n (aka the generator).

– A number g is a primitive root modulo n if every number a
coprime to n is equivalent to a pwoer of g (mod n). I.e. ∃k ∈
Z | gk ≡ a (mod n).

– When raised to different exponents, gk distributes uniformly to
n’s modulo residues.
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3. The question is: how do you do the reverse? How do you find the
exponent?

• Solution:

1.

Diffie-Hellman Key Exchange needs review and notes

3.2 RSA Encryption

• RSA is the most widely used public key algorithm in the world.

• 1970 James Ellis worked on an idea for non-secret encryption.

• You can split the ‘key’ idea into an encryption key and decryption key.

• Clifford Cocks wanted to create a trapdoor one-way function (easy
in one way, difficult in the reverse unless you have special information, i.e.
the trapdoor).

– A message is converted into a number m. Then, raise m to e, where
e is a public number, and evaluate it modulo N to give c, where N
is a random number. Output c.

– Forward: me ≡ ? (mod N), which is easy.

– Backward: ?e ≡ c (mod N), which is hard and requires trial-and-
error.

• If you want to reverse the encryption, you need to find d (the decryption),
where cd ≡ m (mod N). Equivalently, med ≡ m (mod N).

• We need to find ed such that it’s hard to find out what d is, so we turn to
another one-way function.

• Prime factorization is a fundamentally hard problem because of the re-
quirement of trial-and-error.

• Generate a 150-digit long prime number, p1. Generate another prime
number roughly the same size, p2. Find N , where N = p1 · p2. You can
give N to anyone.

• Euler’s Theorem gives us an easy way to calculate d: e · d = k · ϕ(n) + 1.
d should be the private key.
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3.2.1 Example

• Bob has a message he converted into a number m.

• Alice generates p1 and p2, prime numbers of similar size, and multiplies
them to create n = p1p2.

• Alice calculates ϕ(n) = (p1 − 1)(p2 − 1) and picks some small public
exponent e such that e is odd and relatively prime to ϕ(n).

• Alice finds the value of her private exponent d and hides everything except
for n and e.

• Bob gets n and e and locks his message by finding me ≡ c (mod n). He
sends c back to Alice.

• Alice finds cd ≡ m (mod n).

• Note that the public can only find d if they know ϕ(n), but that’s really
hard if n is large.

3.3 Euler’s Totient

• Measures the breakability of a number

• Outputs the number of integers that are coprime with the input.

• ϕ(p) = p− 1, where p is a prime number.

• The function is multiplicative: ϕ(A ·B) = ϕ(A) · ϕ(B).

• Euler’s Theorem: mϕ(n) ≡ 1 (mod n).

– Corollary: mk·ϕ(n)+1 ≡ m (mod n).

4 Modular Arithmetic

• Fast modular exponentiation for ab (mod c). We’ll do 5117 (mod 19).

1. Convert b into binary.

117 = 11101012 =⇒ 5117 ≡ 51 · 54 · 516 · 532 · 564 (mod 19).

2. Calculate the expansion, exploiting powers of two.

52 ≡ 5 · 5 ≡ 6 (mod 19), 54 ≡ 6 · 6 ≡ 17 (mod 19) . . . .

3. Evaluate the multiplication.

5117 ≡ 5 · 17 · 16 · 9 · 5 ≡ 1 (mod 19).

• Euclidean Algorithm:

gcd(a, b) = gcd(r, b),

where a > b and r = a− qb for some integer q.
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5 Primality Test

• We don’t have to check if a number is prime by checking each integer
between 1 and n− 1, inclusive. We can the interval [1,

√
n].

• Bits (0 or 1) are now stored in tiny magnetic cells.

• The Sieve of Eratosthenes allows us to generate a list of primes up to
an integer n.

– Start at 2 and mark it if it’s prime. Then, eliminate all multiples
of 2. Then, keep increasing. If the next integer is not marked, it’s
prime and you can mark all multiples of it.

• 1
ln x approaches the prime density up to some number x as x → ∞.

• The Prime Number Theorem says that the number of primes less than
or equal to x is x

ln x .

• Time-space tradeoff refers to trading time for an algorithm to finish
for the amount of space that algorithm takes.

6 Randomized Algorithms

• We don’t need to prove that a given number is prime. We just need a to
show it is very unlikely to be composite.

• Fermat’s Little Theorem: ap ≡ a (mod p).

– Corollary: ap−1 ≡ 1 (mod p).

• Fermat Primality Test:

1. Given an integer p, generate a random integer a less than p.

2. Check if gcd(p, a) = 1. If no, then p is composite.

3. If yes, then check if ap−1 ≡ 1 (mod p). If no, then it’s composite.

4. If yes, then p is most likely prime. Note that p could be composite
and Fermat’s Little Theorem could hold, so it’s not guaranteed. Call
such p’s “fools.”

5. The number of fools must divide the total size of the group we select
from. Thus, the probability of getting a fool is less than or equal to
1
2 . So, we can just choose a lot of a’s.

7


	Ancient Cryptography
	General Introduction
	The Enigma Encryption Machine

	Ciphers
	Code vs. Cipher
	Shift Ciphers
	XOR Bitwise Operation

	Modern Cryptography
	Public Key Cryptography
	RSA Encryption
	Example

	Euler's Totient

	Modular Arithmetic
	Primality Test
	Randomized Algorithms

