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12.3: The Dot Product

•
u · v = |u||v| cos θ

• Vectors u and v are orthogonal if u · v = 0.

•
u · u = |u|2

•
projvu =

u · v
v · v

v

12.4: The Cross Product

•
u× v = (|u||v| sin θ)n

• Nonzero vectors u and v are parallel iff u× v = 0.

•
u× (v ×w) = (u ·w)v − (u · v)w

• |u× v| is the area of a parallelogram.

• |(u× v) ·w| is the volume of a parallelpiped.
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12.5: Lines and Planes in Space

• A vector equation for the line L through P0(x0, y0, z0) parallel to v is

r(t) = r0 + tv

• The plane through P0(x0, y0, z0) normal to n = Aî+Bĵ + Ck̂ is

n · ⃗P0P = 0 or A(x− x0) +B(y − y0) + C(z − z0) = 0

– Note: n = ⟨A,B,C⟩

• Two planes are parallel iff their normals are parallel, or n1 = kn2 for
some scalar k.

• The angle between planes is the angle between their normal vectors.

13.1: Curves in Space and Their Tangents

• Graph 3D curves by looking only at 2 variables at a time.

•
v(t) =

dr

dt

• If r is a differentiable vector function and the length of r(t) is constant,
then

r · dr
dt

= 0.

– Note: You can prove this is true by taking the dot product of r(t) = c
with itself.

13.2: Integrals of Vector Functions; Projectile
Motion

• ∫
r(t) dt = R(t) +C

13.3: Arc Length in Space

• The length of a smooth curve r(t), a ≤ t ≤ b traced as t increases from a
to b is

L =

∫ b

a

|v| dt.
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•

s(t) =

∫ t

t0

√
[x′(τ)]2 + [y′(τ)]2 + [z′(τ)]2 dτ =

∫ t

t0

|v(τ)| dτ

•
T =

v

|v|

14.1: Functions of Several Variables

• A point in a region R in the xy-plane is an interior point of R if a disk
drawn around it is entirely in R.

• A point is a boundary point if a disk drawn around it lies outside of R
and inside of R.

• A region is open if it consists entirely of interior points.

• A region is closed if it contains all of its boundary points.

• A region is bounded if it lies within a disk of finite radius.

• A region is unbounded if it is not bounded.

14.2: Limits

14.3: Partial Derivatives

• If partial derivatives of f(x, y) exist and are continuous throughout a disk
centered at (x0, y0), f is continuous at (x0, y0).

• If f(x, y) and its partial derivatives fx, fy, fxy, fyx are defined throughout
an open region containing a point (a, b) and are continuous at (a, b), then

fxy(a, b) = fyx(a, b).

• If a function f(x, y) is differentiable at (x0, y0), then f is continuous at
(x0, y0).

14.4: The Chain Rule

•
dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

• If instead x = g(r, s), y = h(r, s), and z = k(r, s),

∂w

∂s
=

∂w

∂x

∂x

∂r
+

∂w

∂y

∂y

∂r
+

∂w

∂z

∂y

∂r
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– Note that it’s very similar for ∂w
∂s

• Suppose F (x, y) = 0 defines y as a differentiable function of x. Then at
any point where Fy ̸= 0, dy

dx = −Fx

Fy

•
∂z

∂x
= −Fx

Fz
and

∂z

∂y
= −Fy

Fz

14.5: Directional Derivatives and Gradient Vec-
tors

• The gradient of f(x, y) is the vector

∇f =
∂f

∂x
î+

∂f

∂y
ĵ

• If f(x, y) is differentiable in an open region containing P0(x0, y0) then

Duf(P0) = ∇f(P0) · u.

– Note that u must be a unit vector.

• f increases most rapidly in the direction of the gradient vector ∇f at P .
The directional derivative in this direction is Duf = |∇f |

• Similarly, f decreases most rapidly in the direction of −∇f , so Duf =
−|∇f |

• Any direction u orthogonal to a gradient ∇f ̸= 0 leads to a directional
derivative of 0.

• At every point (x0, y0) in the domain of a differentiable function f(x, y),
the ∇f is normal to the level curve through (x0, y0).

•
d

dt
f(r(t)) = ∇f(r(t)) · r′(t)

– Note this is very similar to the chain rule from 1D calc.

14.6: Tangent Planes and Differentials

• The tangent plane to the level surface f(x, y, z) = c at a point P0 =
(x0, y0, z0) is

∇f(P0) · ⟨x− x0, y − y0, z − z0⟩ = 0.

• The normal line to the level surface at P0 is

⟨x0 + y0 + z0⟩+ ⟨fx(P0), fy(P0) + fz(P0).
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• The plane tangent to the surface z = f(x, y) at (x0, y0, f(x0, y0)) at the
point P0(x0, y0, z0) = (x0, y0, f(x0, y0)) is

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)− (z − z0) = 0.

• Estimate the change in the value of a function f by moving a small distance
ds from a point P0 in the direction u by

df = (∇f(P0) · u)ds

• The linearization of a function f(x, y) at a point (x0, y0) is

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

• Let f(x, y) have continuous first and second derivatives in some rectangle
R. Let M be the upper bound for |fxx|, |fxy|, |fyy| in R. Then the error
E(x, y) of the linear approximation satisfies

|E(x, y)| = 1

2
M(|x− x0|+ |y − y0|)2

• If we move from (x0, y0) to a point (x0 + dx, y0 + dy) nearby, the total
differential of f is

df = fx(x0, y0)dx+ fy(x0, y0)dy.

14.7: Extreme Values, Saddle Points

• First Derivative Test for Local Extrema: If f(x, y) has a local max-
imum or minimum at an interior point of (a, b) and if the first partial
derivative exist there, then fx(a, b) = 0 and fy(a, b) = 0.

• An interior point where both fx and fy are zero or where both fx and fy
and do not exist is a critical point of f .

– Note: Every global max/min must be a local max/min. Every local
max/min must be a critical point.

• Second Derivative Test for Local Extrema:

– f has a local maximum at (a, b) if fxx < 0 and fxxfyy − f2
xy > 0

at (a, b).

– f has a local minimum at (a, b) if fxx > 0 and fxxfyy − f2
xy > 0 at

(a, b).

– f has a saddle point at (a, b) if fxxfyy − f2
xy < 0 at (a, b).

– The test is inconclusive if fxxfyy − f2
xy = 0.
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14.8: Lagrange Multipliers

• Suppose that f(x, y, z) and g(x, y, z) are differentiable and ∇g ̸= 0 when
g(x, y, z) = 0. To find the local maximum and minimum values of f
subject to the constraint g(x, y, z) = 0, find the values of x, y, z and λ
that satisfy

∇f = λ∇g and g(x, y, z) = 0.

• Remember to check the boundaries.

14.9: Taylor’s Formula for Two Variables

•
f(x, y) = f(0, 0) + xfx + yfy +

1

2
(x2fxx + 2xyfxy + y2fyy)

•
|E| ≤ M

3!
(|x− x0|+ |y − y0|)3

15.1: Double and Iterated Integrals over Rectan-
gles

• Fubini’s Theorem: If f(x, y) is continuous throughout a region R, then∫ ∫
f(x, y)dx dy =

∫∫
f(x, y)dy dx.

– Note that if R is rectangular, we can switch the bounds without
redrawing the region R.

15.2: Double Integrals over General Regions

• Fubini’s Theorem also applies just make sure you change your bounds of
integration.

• dy dx: Sketch the region. Draw an arrow parallel to the y axis in the
direction of +y. Where it enters is its lower bound. Where it leaves is its
upper bound. The x-limits are the ones that include all vertical arrows
you can draw through region R.

• dx dy: Same thing as above but draw arrows parallel to x axis instead.

15.3: Area by Double Integration

• The area of a closed, bounded region R is

A =

∫∫
R

dA.
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• The average value of f over R is

1

Area

∫∫
R

f dA.

15.4: Double Integrals in Polar Form

• ∫∫
R

f(r, θ) dA =

∫∫
f(r, θ) r dr dθ.

• Change of coordinates works the same as for
∮
15.3.

15.5: Triple Integrals in Rectangular Coordinates

•
V =

∫∫∫
D

dV

• The average value of F over D is

1

volume of D

∫∫∫
D

f dV

15.6: Applications of Triple Integrals

•
M =

∫∫∫
D

density(x, y, z) dV

• Center of mass:

x =

∫∫∫
D

x density(x, y, z) dV,

•
y =

∫∫∫
D

y density(x, y, z) dV

•
z =

∫∫∫
D

y density(x, y, z) dV

15.7: Triple Integrals in Cylindrical and Spherical
Coordinates

• Cylindrical Coordinates:

x = r cos θ, y = r sin θ, z = z, tan θ = y/x
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– Remember:
dV = r dz dr dθ

and θ always comes from the x-axis

• Spherical Coordinates:

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ

– Remember:
dV = ρ2 sinϕ dρ dϕ dθ

and 0 ≤ ϕ ≤ π

•

15.8: Substitutions in Mutliple Integrals

• The Jacobian of the coordinate transformation x = g(u, v) and y =
h(u, v) is

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣xu xv

yu yv

∣∣∣∣
• Under the transformation x = g(u, v) and y = h(u, v),∫∫

R

f(x, y)dx dy =

∫∫
G

f(g(u, v), h(u, v))
∂(x, y)

∂(u, v)
du dv

• For triple integrals, it’s basically the same thing.

16.1: Line Integrals of Scalar Functions

• If f is defined on a curve C given parametrically by r(t) = ⟨g(t), h(t), k(t)⟩,
then the line integral is∫ b

a

f(g(t), h(t), k(t))|v(t)|dt
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16.2: Vector Fields and Line Integrals: Work,
Circulation, and Flux

• The gradient field of a differentiable function f(x, y, z) is the field of
gradient vectors

∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
• Evaluate the line integral of F = M(x, y, z)̂i + N(x, y, z)ĵ + P (x, y, z)k̂
along C: r(t) = ⟨g(t), h(t), k(t)⟩:

1. Substitute x = g(t), y = h(t), x = k(t) into M(x, y, z), N(x, y, z) and
P (x, y, z) of F .

2. Find the derivative velocity vector dr
dt .

3. Evaluate ∫
C

F · dr =

∫ b

a

F (r(t)) · dr
dt

dt

• Line integrals with respect to dx, dy, dz:

– ∫
C

M dx+N dy + P dz,

where
∫
C
M(x, y, z) dx =

∫ b

a
M(g(t), h(t), k(t)) g′(t) dt, and so on for

N and P.

• The flow along the curve is just the line integral along that curve.

• The flux of a vector field F = M(x, y)i + N(x, y)j if n is the outward
pointing normal vector is∫

C

F · n =

∮
C

M dy −N dx

– If the motion is counterclockwise, n = T × k. If it’s clockwise, n =

k × T , where k is the unit vector in the z-direction and T = r′(t)
|r′(t)| .

16.3: Path Independence, Conservative Fields,
and Potential Functions

• If the line integral
∫
C
F · dr along all paths C from A to B is the same,

then the integral is path independent and the field F is conservative.

• If F is a vector field defined on open region D and F = ∇f for some
scalar function f on D, then f is a potential function for F.
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• Line integrals in conservative fields:∫ B

A

F · dr =

∫ B

A

∇f · dr = f(B)− f(A)

• If
∮
C
F ·dr = 0 around every closed curve in D, the field F is conservative

and vise versa.

• Let F = M(x, y, z)i + N(x, y, z)j + P (x, y, z)k be over an open, simply
connected domain. Then, F is conservative iff

Py = Nz, Mz = Px, and Nx = My.

• Maybe the thing about exact differential forms....?

16.4: Green’s Theorem in the Plane

• The circulation density (curl F · k) of a vector field F = Mi +Nj at
the point (x, y) is

∂N

∂x
− ∂M

∂y
.

• The flux density (divergence) of a vector field F = Mi + Nj at the
point (x, y) is

divF =
∂M

∂x
+

∂N

∂y
.

• Green’s Theorem:

– ∮
C

F · T ds =

∮
C

M dx+N dy =

∫∫
R

(curl F · k) dx dy

– ∮
C

F · n ds =

∮
C

M dy −N dx =

∫∫
R

(div F ) dx dy

16.5: Surfaces and Areas

• A surface is parametrized by

r(u, v) = f(u, v)i+ g(u, v)j + h(u, v)k

• The area of a smooth surface parametrized by r, a ≤ u ≤ b, c ≤ v ≤ d is

A =

∫∫
R

|ru × rv|dA =

∫ d

c

∫ b

a

|ru × rv|du dv
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• The surface area differential is

dσ = |ru × rv|du dv

– In spherical coordinates, it’s useful to remember dσ = |rϕ × rθ| =
R2 sinϕ dθ dϕ

• The area of the surface F (x, y, z) = c over a closed and bounded plane
region R is ∫∫

R

|∇F |
|∇F · p|

dA,

where p = i, j, or k is normal to R and ∇F · p ̸= 0.

• For a graph z = f(x, y) over a region R in the xy plane, the surface area
formula is

A =

∫∫
R

√
f2
x + f2

y + 1 dx dy

16.6: Surface Integrals

•

• The flux (or surface integral) of a vector field F over a smooth surface
S having chosen normal unit vectors n is∫∫

S

F · n dσ.
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– The outward normal is given by

n̂ =
ru × rv
|ru × rv|

.

So, ∫∫
S

F · n dσ =

∫∫
R

F · (ru × rv) du dv

– If S is a part of a level surface g(x, y, z) = c, then

n = ± ∇g

|∇g|
,

so ∫∫
S

F · n dσ =

∫∫
R

F · ±∇g

|∇g · p|
dA.

16.7: Stokes’ Theorem

•
curlF = ∇× F

• Stokes’ Theorem: Let F = Mi+Nj + Pk. Then, the circulation of F
around boundary curve C in the counterclockwise direction with respect
to the surface’s unit normal vector n equals the integral of the curl vector
field over S, a piecewise smooth surface:∮

C

F · dr =

∫∫
S

(∇× F ) · n dσ

– Right hand rule! Curl fingers in the direction of C counterclockwise
and your thumb is the normal vector.

•
curl grad = 0 or ∇×∇f = 0

16.8: The Divergence Theorem

• The divergence of a vector field F = M(x, y, z)i+N(x, y, z)j+P (x, y, z)k
is

divF = ∇ · F .

• The flux of vector field F across a piecewise smooth oriented closed surface
S in the direction of the surface’s outward unit normal n equals the triple
integral of the divergence of F over the region D enclosed by the surface:∫∫

S

F · n dσ =

∫∫∫
D

∇ · F dV
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• For every vector field F ,
div(curlF ) = 0

•

14


	The Dot Product
	The Cross Product
	Lines and Planes in Space
	Curves in Space and Their Tangents
	Arc Length in Space
	Functions of Several Variables
	Limits
	Partial Derivatives
	The Chain Rule
	Directional Derivatives and Gradient Vectors
	Tangent Planes and Differentials
	Extreme Values, Saddle Points
	Lagrange Multipliers
	Taylor's Formula for Two Variables
	Double and Iterated Integrals over Rectangles
	Double Integrals over General Regions
	Area by Double Integration
	Double Integrals in Polar Form
	Triple Integrals in Rectangular Coordinates
	Applications of Triple Integrals
	Triple Integrals in Cylindrical and Spherical Coordinates
	Substitutions in Multiple Integrals
	Line Integrals of Scalar Functions
	Vector Fields and Line Integrals: Work, Circulation, and Flux
	Path Independence, Conservative Fields, and Potential Functions
	Green's Theorem in the Plane
	Surfaces and Areas
	Surface Integrals
	Stokes' Theorem
	The Divergence Theorem

