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1 Introduction

The following notes were taken based off Columbia University Professor Shree
Nayar’s lecture series on image stitching.

The fundamental question is how can we combine multiple photos to create
a larger photo? (Panoramas)

Derivation logic behind certain formulas are detailed in Prof. Nayar’s videos.

2 2x2 Image Transformations

2.1 Image Manipulation

• There are two classes of image manipulation:
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– Image filtering: changing range (brightness)

g(x, y) = Tr(f(x, y)).

– Image warping: changing domain (location)

g(x, y) = f(Td(x, y))

∗ The transformation Td is the same over the entire image.

∗ Examples include translation, rotation, scaling and aspect ratio,
etc.

2.2 2x2 Linear Transformations

• We have a pixel p1 = (x1, y1) in the original image that transforms into
p2 = (x2, y2), where

p2 = Tp1.

– [
x2

y2

]
=

[
a11 a12
a21 a22

] [
x1

y1

]
.

• Note: We can find the inverses of all the transformation matrices because
T is invertible.

• We can scale the image, where x2 = ax1 and y2 = by1 with the transfor-
mation matrix

S =

[
a 0
0 b

]
.

• We can rotate the image by θ in the counterclockwise direction with the
matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
.

• We can horizontally skew with the matrix

Sx =

[
1 mx

0 1

]
or vertically skew with the matrix

Sy =

[
1 0
my 1

]
.

• We can mirror about the y-axis with

Sx =

[
−1 0
0 1

]
.
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• Remark: Any transformation of the form[
x2

y2

]
=

[
a11 a12
a21 a22

] [
x1

y1

]
– Maps the origin to the origin

– Maps lines to lines

– Maintain parallel lines as parallel

– Are closed under composition.

∗ If T21 transforms p1 to p2 and T32 transforms p2 to p3, then

T31 = T32T21.

3 3x3 Image Transformations

• We can’t represent a translation with a 2x2 matrix.

• The homogeneous representation of a 2D point p = (x, y) is a 3D point
p̃ = (x̃, ỹ, z̃). The third coordinate z̃ ̸= 0 such that

x =
x̃

z̃
, y =

ỹ

z̃
.

–

p =

xy
1

 ≡

z̃xz̃y
z̃

 ≡

x̃ỹ
z̃

 ≡ p̃.

• Then, we represent the translation x2 = x1 + tx and y2 = y1 + ty asx2

y2
1

 ≡

x̃2

ỹ2
z̃2

 ≡

1 0 tx
0 1 ty
0 0 1

x1

y1
1

 .

• All of the 2x2 transformations can be represented as 3x3 transformations.

• Scaling, rotation, skew, and translation are all affine transformations.
They satisfy the formx2

y2
1

 ≡

x̃2

ỹ2
z̃2

 ≡

a11 a12 a13
a21 a22 a23
0 0 1

x̃1

ỹ1
z̃1

 .

• Remark: Affine transformations

– Don’t necessarily map the origin to the origin

– Maps lines to lines
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– Maintain parallel lines as parallel

– Are closed under composition.

• If the last row of the transformation matrix isn’t 0, 0, 1 (can be anything),
then we have a projective transformation, also known as a homogra-
phy.

– Homographies map one plane to another through a point, like imag-
ing a plane through a pinhole (lens).

– Homographies can only be defined up to a scale:h11 h12 h13

h21 h22 h23

h31 h32 h33

x̃1

ỹ1
z̃1

 ≡

x̃2

ỹ2
z̃2

 ≡ k

h11 h12 h13

h21 h22 h23

h31 h32 h33

x̃1

ỹ1
z̃1

 .

We can fix k such that
√∑

(hij)2 = 1.

• Remark: Projective transformations

– Don’t necessarily map the origin to the origin

– Map lines to lines

– Don’t necessarily maintain parallel lines as parallel

– Are closed under composition.

4 Computing Homography

• If two planes share the same center of projection, you can compute the
homography between the two images to map them to the same plane.

• Given a set of matching points between a source image (that gets warped
to the destination) and destination image, find the homography H that
best ”agrees” with the matches.

– Only possible if:

∗ You capture a 3D scene from the same viewpoint

∗ You capture a plane from any viewpoint

∗ You capture a 3D scene that’s far away (acts as if you’re captur-
ing from the same viewpoint)

• xd

yd
1

 ≡

x̃d

ỹd
z̃d

 ≡

h11 h12 h13

h21 h22 h23

h31 h32 h33

xs

ys
1

 .

– There are 9 unknowns, but 8 degrees of freedom since homographies
are equivalent up to a scale factor k.

– We need at least 4 matching points, but more is always better.

– We use this system to created an overdetermined system to find h.
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5 Dealing with Outliers: RANSAC

• Not all pairs that match aren’t the same point in 3D (outliers).

• If the number of outlier pairs is less than half of the total pairs, then you
can use Random Sample Consensus (RANSAC).

• General RANSAC Algorithm:

– Randomly choose s samples. Typically, s is the minimum samples
needed to fit a model.

∗ For a homography, s = 4.

– Fit the model to the randomly chosen samples.

– Count the number M inliers that fit the model within a measure
error of ϵ.

∗ ϵ is the acceptable alignment error in pixels.

– Repeat steps above N times.

– Choose the model that has the largest number M of inliers.

∗ Optional: Recompute the homography matrix with the new in-
liers.

6 Warping and Blending Images

6.1 Warping

• If a pixel in f(x, y) is sent to its corresponding location g(x, y) = f(T (x, y)),
(forward warping) the pixel can land unaligned with the center of a pixel
and result in not all pixels in g(x, y) being filled.

• Solution: backward warping.

– Use forward warping to find the four corners of f(x, y) in g(x, y).

– Apply the inverse transformation to a pixel in g(x, y) to find its cor-
responding location in f(x, y) and use that brightness value. If the
pixel lands between pixels, use the nearest neighbor or interpolate
(use neighbors in a small surrounding box to estimate the brightness
value).

6.2 Blending

• After warping, you’ll see hard seams between images because of vignetting
and exposure differences.
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• Use weighting functions:

Iblend =
w1I1 + w2I2
w1 + w2

,

where Iblend is the intensity of a pixel after being blended.

• Use a weighting function that gives pixels closer to the edge a lower weight.
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